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Sparse distributed memory was proposed by Pentti Kanerva as a realizable architecture that could
store large patterns and retrieve them based on partial matches with patterns representing current
sensory inputs. This memory exhibits behaviors, both in theory and in experiment, that resemble
those previously unapproachable by machines -- e.g., rapid recognition of faces or odors, discovery of
new connections between seemingly unrelated ideas, continuation of a sequence of events when given
a cue from the middle, knowing that one doesn’t know, or getting stuck with an answer on the tip of
one's tongue. These behaviors are now within reach of machines that can be incorporated into the
computing systems of robots capable of seeing, talking, and manipulating. Kanerva's theory is a
break with the Western rationalistic tradition, allowing a new interpretation of learning and
cognition that respects biology and the mysteries of individual human beings.
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Recognizing your mother’s face in a crowd. Experiencing a flood of old memories
an instant after sniffing an odor you haven’t smelled for years. Seeing a connection that
no one ever taught you between two concepts. Discovering that an idea which seemed to
occur to you spontaneously was actually given to you by a friend in a conversation last
year. Recognizing that a particular leaf is a maple. Humming the rest of a familiar tune
when given a phrase from the middle. Knowing that you don't know the answer to a
question. Knowing that you do know the answer to a question, but that it is tnaccessibly

perched on tip of your tongue.

These everyday phenomena illustrate capabilities of human beings that we do not
know how to reproduce in a machine but that would be very useful if we could. The
failure of artificial intelligence to produce machines with any of these capabilities after
forty years of research is not a failure of intention. It is a failure of the rationalistic
philosophy deeply rooted in Western thought (/). That philosophy has produced in many

disciplines a search for models that combine context-free (meaningless) elements into
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systems govemed by formal laws. Not only have information-processing models of
cognition fallen short in computer science, but corresponding models have also fallen
short in anthropology, economics, linguistics, political science, psychology, and other
disciplines. These shortcomings have prompted a new examination of what it means to
be human, a search for a philosophy that respects the mystery of individuals and the

biological roots of all learning.

Against this background, the emergence of Pentti Kanerva's theory of sparse
distributed memory is refreshingly welcome (2). Kanerva departs from the rationalistic
tradition to develop an architecture of memory, inspired by biology, in which the
phenomena I mentioned in the first paragraph can arise holistically. Because his theory
deals with entire patterns stored across large regions of the memory space, he does not
insist that anyone can ever know precisely how the phenomena arise. In what follows, I
will describe the central ideas of sparse distributed memory; I would encourage you to

read the details in Kanerva’s book.

The theory begins with an interpretation of human long-term memory as a storage
system that associates sensory input pattemns quickly with actions that are appropriate for
the situation. In Kanerva's model, sensory input is represented in the form of very long
bit vectors containing thousands or tens of thousands of bits. Because no two external
situations are identical, the memory must respond to partial matches between the current
sensory pattern and previously stored pattens. The measure of dissimilarity between
pattems is the number of bits in which they differ, a metric known as the Hamming

distance. For example, the distance between 01101 and 10111 is 3 bits.
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Kanerva illustrates his design with an example of 1,000-bit patterns, giving rise to a
space of 21900 possible patterns. In this space, 1/1000 of the patterns are within 451 bits
of any given pattern, and all but 1/1000 of the patterns are within 549 bits. The
extremely large number of patterns that are so close to the mean distance of 500 bits
between two random pattems is crucial to the memory's ability to make connections

between patterns that seemingly have little to do with each other.

Ordinary (random-access) computer memories are designed around a simple idea:
within a few nanoseconds after a memory cue (address) is presented for a read operation,
the memory responds with an output pattem (data). High speed is achieved by
associating one physical location with each possible address. Current technology limits
the designs to about 25 address bits and 64 data bits, nowhere near the pattern lengths

needed for simulation of human long-term memory.

Kanerva proposes an architecture that encompasses an affordable number of
physical locations (say 1,000,000) and a large pattern size (say 1,000 bits). Each location
is assigned an address (1,000-bit pattern) at random, and the set of location addresses
constitutes a sparse subset of the memory space. The memory has an input register for
the cue (address) pattern and an input register for the data patiern, and it has a register for
an output pattern (these registers each hold 1,000 bits). Each location has an address
decoder that compares its own address with the input cue, selecting that location as a
participant in the next storage or retrieval operation whenever the cue is within distance
d of the location’s address. Kanerva demonstrates that the address decoders can be built
of linear threshold circuits -- gates that produce a 1 at their output whenever the number

of 1s among their many inputs is at least 1000~d. He notes a similarity of operation
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between these circuits and neurons in the nervous systems of many animals.

Kanerva recommends d=451 for the 1,000,000-location memory of 1,000-bit
patterns. With these parameters, approximately 1/1000 of the physical locations will be
selected by any given input cue. How are storage and retrieval carried out with this

arrangement?

To store a 1,000-bit data pattern at address A , the memory works as follows. The
input cue pattem A is presented to the memory, and all locations within 451 bits of A
select themselves. This set of selected locations is called the sphere selected by A. A
copy of the input data pattern, which is to be associated with A,

is then entered into each of the selected locations. Because any given location is within
the spheres of selection of many distinct cue patterns, entering a new value must not
obliterate the previous contents of the location. This is accomplished by implementing
each location as a set of 1,000 counters, one for each bit position of the data. Data are
entered by adding 1 to each counter for which the corresponding data bit is 1, and
subtracting 1 from each counter for which the corresponding data bit is 0. Kanerva

calculates that 8-bit counters are adequate for most applications.

To retrieve a 1,000-bit pattern corresponding to input cue A , the memory works as
follows. The sphere of selected locations is formed as described above. A set of 1,000
output counter values is constructed from all the selected locations by summing all the
corresponding selected counters; for example, the counter in output bit position 2 is the
sum of the bit-2 counters of each selected physical location. The 1,000-bit output pattern
is constructed from the 1,000 output counters by a threshold method: if an output counter

is nonnegative, that output bit is 1; otherwise it is 0.
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The rationale for the name is obvious: the memory is sparse because the physical
locations are a vanishingly small subset of the memory space; it is distributed because a
pattern is stored in many locations and retrieved by statistical reconstruction from many
locations. Distribution enables the memory to retrieve a stored pattern when the input
cue only partially matches any stored pattern, an ability that arises from the large overlap
between the spheres of selected locations of two similar cues. It also renders the memory

robust in case of failures of portions of the addressing or storage hardware.

Each storage and retrieval can be carried out with massively parallel operations
among the address decoders and counters, allowing the memory to respond rapidly. At
the NASA Ames Research Center, David Rogers has built a simulator of the sparse
distributed memory running on a 32,768-node Connection Machine 2 of the Thinking
Machines Corporation,; it simulates 250,000 locations with 256-bit patterns, with cycle

time of about 1/2 second.

Let us consider again the phenomena mentioned at the start of this essay. The
memory’s ability to retrieve patterns associated with sensory input quickly could allow it
to recognize instantly your mother’s face or a long-forgotten odor. The memory can
form associations between patterns without ever being explicitly taught those
associations because the distance between two patterns is sufficiently small that the one
pattem retrieves the other. Similarly the memory can retrieve a forgotten pattem from
some cue that seemingly had nothing to do with it, giving the impression of generating a
new pattem. It can retrieve the pattern corresponding to ‘‘maple leaves’’ that was
formed internally after storing many patterns encoding specific maple leaves. It can store

patterns in lists representing their temporal order, and begin an iterative retrieval from
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anywhere in the list. Fast convergence of an iterative search can be interpreted as
‘‘knowing that you know’’ and nonconvergence as ‘‘knowing that you don’t know’’; the

tip-of-the-tongue phenomenon would occur somewhere between these two cases.

It is important to remember that the theory predicts that these phenomena will occur
in sparse distributed memory, but it cannot predict the details. It cannot predict which
connections you might see between ideas, which concepts you will form, or what will be

on the tip of your tongue.

Kanerva began to develop his theory in the early 1970s. He did so independently of
James Albus and David Marr, who developed similar theories from observation of the
human nervous system and the cerebellum (3, 4). These theories have the distinguishing
feature that they can be readily tested; they have thus inspired much work with
simulators that verify their mathematical properties and predictions. Albus’s theory also
emphasizes the hierarchical organization of the nervous system, suggesting that
associative memory and sensory encoding may be organized into levels. The three
theories are consistent with the biological theory of learning proposed by Maturana and

Varela (5).

The sparse distributed memory is intended as an integral component of a larger
system that includes sensory apparatus and a scheme for encoding sensory input into
binary patterns. Such a system also includes motors that act when driven by stimulus
patterns. Kanerva calls this an autonomous learning system. It includes a component
called the focus that contains a pattern updated constantly from both sensory input and
the contents of the sparse distributed memory and that generates the patterns used to

drive the motors. The focus represents the current moment of consciousness, which
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continuously changes as the sensory input and the context retrieved from memory
change.

A major research area is the design of sensory encoders. How does visual input get
encoded so that the patterns stored in memory are relatively insensitive to small
rotations, translations, zooms, and pans of the visual field? Or so that certain shapes are
easily detectable within any visual field? How does speech input get encoded so that the
same word produces similar patterns independently of the speaker? How does tactile
input get encoded so that different surface textures are distinguishable? These and
similar questions are occupying Kanerva and his colleagues, who seek to build
prototypes of devices that recognize visual shapes, continuous speech, and fine textures.
A theory proposed by Robert Erickson suggesting that the power of visual systems arises
from large numbers of simple components illustrates a possible sensory-encoding system

that might mesh well with sparse distributed memory (6).

David Rogers has been studying the sparse distributed memory as a statistical
inference machine. In one experiment, he fed in a stream of patterns, each derived from
a vector of measurements of 15 meteorological phenomena from a four-hour interval at a
weather station in Darwin, Australia. There were 50,000 vectors covering about 23 years
of observations. The 15 components of each vector were encoded as a 256-bit pattern
that was the storage address of the single bit indicating rain in the subsequent four-hour
period. Rogers modified the operation of the memory so that the address array would
add addresses similar to those associated with rain and delete addresses not associated
with rain. At the end of the experiment, the address array identified the combinations of

bits that were the most reliable predictors of rain in the data.
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However promising his theory is, Pentti Kanerva advises that it is not a final answer.
It is only a step in a line of investigation whose final outcomes cannot be predicted. His
theory opens the possibility that machines can perform some of the actions of which we
are capable, while leaving plenty of room for the biological roots of intelligence and the

mysteries of each human being.
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Architecture
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This schematic diagram shows the relations among the components of sparse distributed memory.
The memory in this example stores and retrieves 256-bit patterns across 2,000 physical locations. Each
horizontal row is a location. The input pattern (cue) in the address register is compared simultancously to
all patterns in the memory address array, each line of which holds the address of one location. The
distances from each address pattern are compared to the memory’s threshold radius (119 bits) and a subset
of the locations is selected. The 256-bit pattern in the data-in register is stored at the selected locations by
adding 1 to each counter corresponding to a 1 in the pattern and subtracting 1 from each counter
corresponding to a 0 in the pattern. A 256-bit pattem is retrieved by forming 256 sums from the
corresponding counters in each selected location, and then forming a 1 output bit in the data-out register for
each sum that is nonnegative and a 0 for each sum that is positive. The retrieved pattern in the data-out
register is a statistical reconstruction determined from the contents of all selected locations. All selections
can be done in parallel, and all data bits can be handled in parallel, giving the memory great speed over a

wide range of pattern widths and physical locations.
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Abstraction

TR-89.22 (20 May 39)
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Each of the nine patterns at the top was stored in a simulated sparse distributed memory by

addressing the memory with the pattern itself. Each pattern is a 16x16 array of bits that transforms into a

256-bit vector. The three figures at the bottom show the result of an iterative search in which the result of

the first retrieval was used as the input cue for the second retrieval. The final output pattern was none of

the partemns stored. Because each of the nine

stored patterns was constructed from an **0"" with 20% of

the bits randomly reversed, this behavior may be interpreted as the memory’s ability to extract a signal

from noise. Apother interpretaton is that the memory formed a statistical interpolation among the stored

patterns: the new pattern is stable (it will retrieve itself) and thus serves as a conceptualization of the data.
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Sequencing

The six patterns at the top were stored as a list in a simulated sparse distributed memory by storing
each pattern as the data associated with the previous pattern in the sequence. The four patterns at the
bottom of the figure resulted from an iterative search, beginning with a noisy version of the third pattem
and culminating in a clean version of the sixth. This behavior may be interpreted as the memory's ability
to locate the remainder of a temporal sequence given a pattern that is similar to one of the members. Such
behavior will occur even when the sequence stored in the memory is noisy, suggesting that the memory can

geaerate an abstract form of a sequence.
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